

Grade Obtained	A	B	C	D	N/A
2020	42.9%	28.4%	21.5%	5.3%	2.0%
2021	45.3%	24.1%	16.6%	7.5%	6.3%

This marking scheme is for the intended Advanced Higher Chemistry Exam in 2020 which was cancelled due to the Covid-19 pandemic. This paper was widely used in schools in 2021 to predict grades for students when the 2021 exams were cancelled. Some refer to this paper as the 2021 paper for this reason. Whether this paper would have been the exact same paper presented to students had the exams gone ahead in 2020 is unknown but it fair to conclude that it would have been very close if not the same.
The grades awarded by SQA in 2020 and 2021 are in the table above.

11	B	XA This reaction is electrophilic addition. No free radicals formed by homolytic fission involved. ØB Free radial chain reaction substitution. Radicals in inititation step are formed by homolytic fission $\boxtimes C$ This reaction is nucleophilic addition. No free radicals formed by homolytic fission involved. XD This reaction is electrophilic substitution. No free radicals formed by homolytic fission involved.											
12	C	A. hexane				B. hex-1-ene			C. hex-1-yne		D. Cyclohexane		
			Bond	$\underset{\text { S bonds }}{\text { Siga }}$	${ }_{\text {Pi bonds }}$	Bond	Stigm ${ }_{\sigma}^{\text {Sonds }}$	${ }_{\text {Pi bonds }}^{\text {Pi }}$	Bond		Bond	Sigma σ bonds	${ }_{\substack{\text { Pi bonds }}}^{\text {a }}$
			5x c-c	5xa	$0 \times \pi$	$4 \times C-c$	$4 \times \sigma$	0xa	$4 \times C-C$	$4 \times \sigma$ 0xa	$6 \times C-c$	$6 \times \sigma$	
			$14 \times \mathrm{C}$ - H	$14 \times \sigma$	$0 \times \pi$		$1 \times$ \%						
						$12 \times C-H$	12×0	$0 \times \pi$	$10 \times C$ -	10×6 Oxa			
			Total	$19 \times \sigma$	$0 \times \pi$	Total	17 vo	$1 \times \pi$		15×6	Total	18×6	$0 \times \pi$
13	D	खA 1-chloropropane would be formed by the addition of HCl across $C=C$ bond in propene ® 2 -chloropropane would be formed by the addition of HCl across $C=C$ bond in propene区CH in HCl goes onto carbon in $C \equiv C$ bond with the highest number of H already attached $\boxtimes \mathrm{DH}$ in HCl goes onto carbon in $C \equiv C$ bond with the highest number of H already attached . H attaches to C_{1} and Cl then attaches to C_{2} forming 2-chloropropene											
14	C												
15	D												

16

23	C	A. Propane has 2 peaks	B. Propanal has 3 peaks					
		C. Propanone has 1 peak	D. Propan-1-ol has 3 peaks					
24	A							
25	C				159	Cl-Cl	Br-Br	152

2020 Adv Higher Chemistry Marking Scheme									
Long Qu	Answer	Reasoning							
$1 a$	Electrons drop to lower energy level	Energy is released when a firework explodes and some of the energy is absorbed in promoting electrons to a higher energy level. When those excited electrons fall back to the lower level, specific quantities of energy are released corresponding to the differences in energy levels. These specific quantities of energy correspond to specific wavelengths of light.							
$1 \mathrm{~b}(\mathrm{i})$	620	$\begin{aligned} E & =\frac{L \times h \times c}{\lambda} \quad \therefore \lambda=\frac{L \times h \times c}{E} \\ \lambda=\frac{L \times h \times c}{E} & =\frac{6.02 \times 10^{23} \mathrm{~mol}^{-1} \times 6.63 \times 10^{-34} \mathrm{~J} s \times 3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}{193 \times 1000 \mathrm{~J}} \\ & =6.20 \times 10^{-7} \mathrm{~m} \\ & =620 \times 10^{-9} \mathrm{~m} \\ & =620 \mathrm{~nm} \end{aligned}$							
1 b (ii)	Calcium	Metal	barium	n calcium	copper	lithium	potassium	sodium	strontium
		Wavelength	554 nm	6 620 nm	522 nm	671 nm	405 nmn	589 nm	650 nm
		Colour	green	orange-red	blue-green	crimson	lilac	orange-yellow	red
$1 \mathrm{C}(\mathrm{i})$	entropy of a reaction and its surroundings always increases	The total entropy of a reaction system and its surroundings always increases for a spontaneous process.							
1c(ii)	491	$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}=0 \therefore T=\frac{\Delta H^{\circ}}{\Delta S^{\circ}}=\frac{+250 \times 1000 \mathrm{~J} \mathrm{~mol}^{-1}}{+509 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}=491 \mathrm{~K}$							
$2 a$	octahedral	Octahedral shape is caused by six pair of electrons arranged around a central atom							
		$F-B e-F$		3 electron pairs					\square
		Linear		Trigonal Planar	Tetrahedral		Trigonal Pyramida	Octahedral	
$2 b$	7	Seven different ligands donate a pair of electrons to the central Ni^{2+} ion. This gives a co-ordination number of 7 on this complex ion.							
2c(i)	amminepentaaquanickel(II)					$\underbrace{\mathrm{OUUQ}}_{\substack{\mathrm{H}_{2} \mathrm{O} \\ \text { ligand }}}$	nicke metal name	(II) Charge metal ion	
						Central Ion:		Charge:	
		Ligand	Name	Ligand	Name	Positive Complex: metals keep their name Negative Complex: Metals end in ATE e.g. Cuprate, Ferrate, Cobaltate		Charge of central ion is converted into roman numerals and put in brackets	
			aqua ${ }_{\text {ammine }}$	Chloride Cl^{-}	chlorido				
		 NH_{3} CO coa			nitrito				

	Substance which alters the biochemical processes in the body	A drug is a chemical which alters the normal biochemical processes in the body. An agonist is a chemical which binds to a receptor protein and produced the biochemical response. An antagonist is a chemical which binds to a receptor but does not produce the biochemical response.					
	inhibitor	Inhibitors bind to proteins in body to block their activity. Antagonists bind to receptor proteins to block the biochemical response of receptor					
	2483						
		3 mark answer		2 mark answer		1 mark answer	
90	Open Question	Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.		Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.		Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.	
$0 \mathrm{a}(\mathrm{i})$	58.1	$\begin{aligned} P V=n R T \quad \therefore n & =\frac{P V}{R T}=\frac{101 \times 0.259}{8.31 \times 353}=0.00892 \mathrm{~mol} \\ g f m & =\frac{\text { mass }}{\text { no of mol }}=\frac{0.518}{0.00892}=58.1 \end{aligned}$					
10a(ii)	One answer from:	Propanone or propanal	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ a cor	correct structural formula for propanone/propanal		any other carbonyl compound that fits the GFM calculated in (a)(i)	
O	One answer from:	The boiling point (of butanoic acid) is above $100^{\circ} \mathrm{C}$		The boiling point (of butanoic acid) is above boiling point of water the water (bath) cannot reach a high enough temperature.			
$1 a(i)$	$K=\frac{\left[I_{3}{ }^{-}\right]}{\left[I_{2}\right]\left[\mathrm{I}^{-}\right]}$	$\begin{array}{r} \text { For the equation: } a A+b B \rightleftharpoons c C+d D \\ \qquad k=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \end{array}$					
11a(ii)	779	Assuming a 1 litre container: $\left[I_{2}\right] 1.21 \times 10^{-3}=0.00121 \mathrm{~mol} \mathrm{l}^{-1}$ (in question) $\left[I_{3}{ }^{-}\right]=0.116 \mathrm{~mol} \mathrm{l}^{-1}$ (in question) $[K I]=0.239 \mathrm{~mol} \mathrm{l}^{-1} \therefore\left[I^{-}\right]=0.239 \mathrm{~mol} \mathrm{l}^{-1}$ (at start) but $0.116 \mathrm{~mol} \mathrm{I}^{-}$used up in reaction so $0.123 \mathrm{~mol} \mathrm{I}^{-}$remaining at equilibrium. Assuming 1 litre container, [I^{-}] at equilibrium is $0.123 \mathrm{~mol} \mathrm{l}^{-1}$ $K=\frac{\left[I_{3}^{-}\right]}{\left[I_{2}\right]\left[I^{-}\right]}=\frac{0.116}{0.00121 \times 0.123}=779.4$					
	Answer to include:	One from list for $1^{\text {st }}$ Mark	Structure depends on VSEPR/ minimising repulsion/minimising repulsion between lone/non-bonding pairs			repulsion is greatest between lone/non-bonding pairs	
$11 b$		One from list for $2^{\text {nd }}$ Mark	($\operatorname{In} B$) the lone/non-bonding pairs are 120° from one another		in A the lone/nonbonding pairs are 90° from one another	the angle is greater between nonbonding/lone pairs (in B)	the lone/nonbonding pairs are further away from each other (in B)

