

2020 Marking Scheme

Grade Obtained	A	В	С	D	N/A
2020	42.9%	28.4%	21.5%	5.3%	2.0%
2021	45.3%	24.1%	16.6%	7.5%	6.3%

This marking scheme is for the intended Advanced Higher Chemistry Exam in 2020 which was cancelled due to the Covid-19 pandemic. This paper was widely used in schools in 2021 to predict grades for students when the 2021 exams were cancelled. Some refer to this paper as the 2021 paper for this reason. Whether this paper would have been the exact same paper presented to students had the exams gone ahead in 2020 is unknown but it fair to conclude that it would have been very close if not the same. The grades awarded by SQA in 2020 and 2021 are in the table above.

2020 Adv Higher Chemistry Marking Scheme MC Reasoning Answer Qu Aufbau Principle: C 1 Electrons fill up in order of increasing energy 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p 8s 85 ☑A l=0 ∴ s-subshell and not an outer electron in 2p Oxygen ■B l=1 : p-subshell and an outer electron in 2p 2 Α electron arrangement = 2,6 $\boxtimes C m = 0 \therefore$ named p-subshell in 2p electronic configuration = $1s^2 2s^2 2p^4$ ■D mi=1 .: named p-subshell in 2p Electronic configuration of chromium atom: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵ 4s¹ \therefore 1s² 2s² 2p⁶ 3s² 3p⁶ shells are full and have no unpaired electrons. 3d⁵ 3 D **4**5¹ \mathbb{E} A X has smaller pK_a than Y so X is a weaker acid than Z \therefore X is less acidic/more basic than Z \mathbb{E} B X has smaller pK_a than Z so X is a weaker acid than Z \therefore X is less acidic than Z C 4 $\square C$ Y has smaller pK_a than Z so Y is a weaker acid than Z \therefore Y is less acidic/more basic than Z **E**D Y has smaller pK_a than X so Y is a weaker acid than X \therefore Y is less acidic than X $\Lambda G^{\circ} = -475 \text{ kJ mol}^{-1}$ 0 2C + 02 → 2CO 0 2Zn + **O**2 → 2ZnO $\Delta G^{\circ} = -340 \text{ kJ mol}^{-1}$ 5 С СО $\Delta G^{\circ} = -237.5 \text{ kJ mol}^{-1}$ $0x^{\frac{1}{2}}$ + <u></u>¹/₂0₂ ► Zn $\Theta X - \frac{1}{2}$ ZnO + $\frac{1}{2}O_2 \Delta G^\circ$ = +170.0 kJ mol⁻¹ Zn **0'+0'** C + ZnO --> + CO $\triangle G^{\circ} = -67.5 \text{ kJ mol}^{-1}$ I A Enthalpy of formation requires 1 mole of a substances to be formed B Enthalpy of formation requires 1 mole of a substances to be formed С 6 🗹 C Formation of 1mol of a substance from its elements in their natural state D Br₂ is a liquid at room temperature not a gas Effect on Rate Experiment Change Order of reactant 1+2 $[BrO_3^-] \times 2$ $[BrO_{3}^{-}]^{1}$ x2 7 B 2+3 $[Br^{-}]^{1}$ [Br⁻] x2 x2 1+4 [H⁺] x2 x4 [H⁺]² 🗷 A as X is zero order, increasing concentration of X will not increase the rate of reaction 🗷 B as X is zero order, increasing concentration of X has no effect on the rate of reaction 8 D **E**C concentration of X would decrease as time increases D concentration of X would decrease as time increases. X is used up as reaction proceeds Rate = $k[P]^2[Q]$: 2xP and 1xQ react in the slow (rate determining) step ■A 1xP and 2xQ react in the slow step ∴ rate = k[P]¹[Q]² = k[P][Q]² 9 B \square B 2xP and 1xQ reacting in slow step \therefore rate = k[P]²[Q]¹ = k[P]²[Q] EC 1xX and 1xP react in the slow step ∴ rate = k[X]¹[P]¹ = k[X][P] ED 1×X and 1×Q react in the slow step ∴ rate = k[X]¹[Q]¹ = k[X][Q] $\square A OH^{-}$ is a nucleophile and propan-2-ol CH₃CH(OH)CH₃ is a secondary alcohol B OH⁻ is attracted to centres of positive charge and is a nucleophile 10 Α ■C propan-2-ol CH₃CH(OH)CH₃ is a secondary alcohol not a tertiary alcohol ■D propan-2-ol CH3CH(OH)CH3 is a secondary alcohol not a tertiary alcohol

11	В	 A This reaction is electrophilic addition. No free radicals formed by homolytic fission involved. B Free radial chain reaction substitution. Radicals in initiation step are formed by homolytic fission. C This reaction is nucleophilic addition. No free radicals formed by homolytic fission involved. 								
		D This reaction is electrophilic substitution. No free radicals formed by homolytic fission involved.								
		A. hexane B. hex-1-ene C. hex-1-yne D. Cyclohexane								
	_	Bond Sigma Pi Bond Sigma Pi Bond σ bonds π bonds m bo								
12	C	$5 \times C - C 5 \times \sigma 0 \times \pi 4 \times C - C 4 \times \sigma 0 \times \pi 4 \times C - C 4 \times \sigma 0 \times \pi 6 \times C - C 6 \times \sigma 0 \times \pi$								
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
		Total19 x σ 0 x π Total17 v σ 1 x π Total15 x σ 2 x π Total18 x σ 0 x π								
13	D	 ▲ A 1-chloropropane would be formed by the addition of HCl across C=C bond in propene ▲ B 2-chloropropane would be formed by the addition of HCl across C=C bond in propene ▲ C H in HCl goes onto carbon in C=C bond with the highest number of H already attached ▲ D H in HCl goes onto carbon in C=C bond with the highest number of H already attached ▲ A 1-chloropropane would be formed by the addition of HCl across C=C bond in propene 								
		Н + НСІ								
		Н-С-Н ОНН Н-С-НОНН								
14	C	$ H-C-O-H+C +C-C-C-H \rightarrow H-C-O-C-C-C-H $								
		$ \begin{array}{cccc} H - \dot{C} - O - H + C \dot{I} - \dot{C} - \dot{C} - \dot{C} - H \longrightarrow H - \dot{C} - O - \ddot{C} - \dot{C} - \dot{C} - H \\ H - C - H & H & H & H - C - H & H & H \end{array} $								
		H Ĥ								
		$CH_{3}CH(OH)CH_{3} + CH_{3}CH_{2}COCI \longrightarrow (CH_{3})_{2}CHOOCCH_{2}CH_{3} + HCI$								
		$R_3 \qquad R_1 \qquad \qquad$								
		$R_3 \sim R_4 \qquad (H_3C) \sim CH_3$								
		Identify								
		R_1 CH R_4 H_3C								
		Reinsert R-groups into reactant								
15	D	0								
		TCH3								
		H_3C								
		CH ₂								
		0								
		CH ₃								
		H ₃ C ⁻ CH ₂								

16	В	O O -C- -C - C carbonyl group carboxyl gro O -C - O - ester link phenyl group	$ \begin{array}{c c} & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & $	ester link phenyl group dH hydroxyl group group	
17	A	H H H H hydrogen environment 1 AGAIN			
18	D	 ☑ A C₄H₉NH₂ is a primary amine ☑ B C₃H₇NHCH₃ is a secondary at ☑ C C₂H₅NHC₂H₅ is a secondary at ☑ D C₂H₅N(CH₃)₂ is a tertiary at 	mine ∴ hydrogen bonding amine ∴ hydrogen bonding		
		Reactant 1	Reactant 2	Dursturst	
19	С	Iodomethane CH3I Iodomethane CH3I	iodomethane CH3I Iodoethane C2H5I Iodoethane C2H5I	ProductEthaneCH3CH3PropaneCH3CH2CH3ButaneCH3CH2CH2CH3	
19 20	C A	Iodomethane CH3IIodomethane CH3IIodoethane C2H5I☑A Ketones do not react with To☑B Aldehydes would react with Tol☑C Ethers do not react with Tol☑D Primary alcohols do not react	iodomethane CH ₃ I Iodoethane C ₂ H ₅ I Iodoethane C ₂ H ₅ I Ollen's Reagent but will re Tollen's Reagent and lithiu len's Reagent or lithium a t with Tollen's Reagent or	Ethane CH ₃ CH ₃ Propane CH ₃ CH ₂ CH ₃ Butane CH ₃ CH ₂ CH ₂ CH ₃ act with lithium aluminium hydride um aluminium hydride luminium hydride	
	C A D	Iodomethane CH3I Iodomethane CH3I Iodoethane C2H5I ☑A Ketones do not react with To ☑B Aldehydes would react with Tol ☑C Ethers do not react with Tol ☑D Primary alcohols do not react ☑A Having the same empirical formula does ☑C Two families can have same empirical	iodomethane CH ₃ I Iodoethane C ₂ H ₅ I Iodoethane C ₂ H ₅ I Iollen's Reagent but will re Tollen's Reagent or lithium a t with Tollen's Reagent or ormula does not guarantee not mean they have same empirical formula e.g. alco	EthaneCH3CH3PropaneCH3CH2CH3ButaneCH3CH2CH2CH3act with lithium aluminium hydrideum aluminium hydrideluminium hydridee lithium aluminium hydridee the same chemical formulae formula and same mass	

		A. Propane has 2 peaks	B. Propanal has 3 peaks				
23	С	H H H H H H H - C - C - C - H H H H H H H H H H Hydrogen Environment \bullet C. Propanone has 1 peak H O H H - C - C - C - H H O H H - C - C - C - H H O H H - C - C - C - H H H H H H H H H H H H H H Hydrogen Environment \bullet H O H H - C - C - C - H H H H H H H H H H H H H Hydrogen Environment \bullet H O H H - C - C - C - H H H H H H H H H H H H H H H H H Hydrogen Environment \bullet H O H H - C - C - C - Hydrogen Environment \bullet H O H	$\begin{array}{c} H \\ H $				
24	A	 Image: A n Zn²⁺(NO₃⁻)₂ = v × c = 0.4 × 0.1 = 0.04mol Zn(NO₃)₂ f.u. ∴ 0.08mol NO₃⁻ ions Image: B n (Na⁺)₂SO₄²⁻ = v × c = 0.5 × 0.1 = 0.05mol Na₂SO₄ f.u. ∴ 0.05mol SO₃²⁻ ions Image: C n Ba²⁺(Cl⁻)₂ = v × c = 0.25 × 0.12 = 0.03mol BaCl₂ f.u. ∴ 0.06mol Cl⁻ ions Image: D n K⁺I⁻ = v × c = 0.3 × 0.15 = 0.045mol KI f.u. ∴ 0.045mol NO₃⁻ ions 					
25	С	bond enthalpy = Energy to break individual bond x Avogard = 3.22×10 ⁻²² kJ x 6.02 = 193.844 kJ mol ⁻¹	do's number (L) Bond F - F Cl - Cl Br - Br I - I 2x10 ²³ mol ⁻¹ Bond Enthalpy 159 243 194 152 (kJ mol ⁻¹)				

2020 Adv Higher Chemistry Marking Scheme						me			
Long Qu	Answer			F	Reas	onin	9		
1a	Electrons drop to lower energy level	Energy is released when a firework explodes and some of the energy is absorbed in promoting electrons to a higher energy level. When those excited electrons fall back to the lower level, specific quantities of energy are released corresponding to the differences in energy levels. These specific quantities of energy correspond to specific wavelengths of light.							
1b(i)	620	$E = \frac{L \times h \times c}{\lambda} \qquad \therefore \lambda = \frac{L \times h \times c}{E}$ $\lambda = \frac{L \times h \times c}{E} = \frac{6.02 \times 10^{23} \text{mol}^{-1} \times 6.63 \times 10^{-34} \text{ J s} \times 3 \times 10^8 \text{ m s}^{-1}}{193 \times 1000 \text{ J}}$ $= 6.20 \times 10^{-7} \text{ m}$ $= 620 \times 10^{-9} \text{ m}$ $= 620 \text{ nm}$					-		
1hcm	Calcium	Metal Wavelength	barium 554nm	calcium 620nm	copper 522nm	lithium 671nm	potassium 405nmn	sodium 589nm	strontium 650nm
1b(ii)	Calcium	Colour	green	orange-red	blue-green	crimson	lilac	orange-yellow	red
1c(i)	entropy of a reaction and its surroundings always increases			opy of a r s for a s		•		Surround	lings
1c(ii)	491	$\Delta G^{\circ} = \Delta$	H⁰-T∆S	5° = 0 ∴ `	$T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}}$	= +25	0 × 1000 509 J K ⁻¹) J mol ⁻¹ mol ⁻¹	= 491K
2a	octahedral	Octahedra 2 electron F — Be	pairs 3	caused by s electron pairs			arranged ar 5 electron po		tral atom ctron pairs
		Linear	• Т	rigonal Planar	Tetra	hedral	Trigonal Pyran	nidal Oc	tahedral
2b	7	Seven different ligands donate a pair of electrons to the central Ni ²⁺ ion. This gives a co-ordination number of 7 on this complex ion. H_2O							
2c(i)	amminepentaaquanickel(II)	Neutral ligand Ligand OH ₂ NH ₃	ammine I ligano	-	no. of ands = 5 ds include: Name chlorido cyanido	H ₂ O ligand <u>Central Ion</u> <u>Positive Co</u> metals kee <u>Negative (</u> Metals end	metal name : <u>omplex</u> : ep their name <u>Complex</u> :	Charge metal id Charge: Charge o	on on f central nverted oman and put

		Type of Ligand Monodentate Bidentate Hexadentate					
		Neutral Ligands Charged Ligands Oxalic acid 04C2 ²⁻					
2c (ii)		Water OH ₂ Chloride Cl ⁻					
	Donates one pair of	Examples Ammonia NH3 Cyanide CN					
	electrons to metal	1,2-diaminoethane					
		Carbon Monoxide CO Nitrite NO2 ⁻ N2C2H8					
		Hydroxide OH ⁻ H ₂ N - c - NH ₂					
		[Ni(OH2)6] ²⁺ has 1st order kinetics as index on square brackets has value = 1					
2d(i)	Second	NH ₃ has 1st order kinetics as index on square brackets has value = 1					
		Overall order = order of $[Ni(OH_2)_6]^{2+}$ + order of $[NH_3] = 1 + 1 = 2$					
24	5200 l mol ⁻¹ s ⁻¹						
2d(ii)	5200 (Moi - S -	$k = \frac{\text{rate}}{[[\text{Ni}(OH_2)_6]^{2^+}][\text{NH}_3]} = \frac{1.3 \times 10^2 \text{ mol } l^{-1} \text{ s}^{-1}}{0.10 \text{ mol } l^{-1} \times 0.25 \text{ mol } l^{-1}} = 5200 \text{ l mol}^{-1} \text{ s}^{-1}$					
		Benzene has a ring of 6 carbons joined by sigma σ bonded sp² hybridised orbitals.					
3a (i)	sp²	Each carbon in the ring has an unhybridised p-orbital which side on merges into rings					
		of delocalised electrons above and below the ring of carbons.(π bonds)					
2	side on	π bonds are formed from the side on overlap of unhybridised p orbitals					
3a(ii)	overlap of orbitals	perpendicular to the axis of the covalent bond. Sigma bonds are formed by end-on overlap of orbitals along the axis of the bond					
	· · · · · · · · · · · · · · · · · · ·	delocalised electrons molecular orbital over					
		1 ³¹ Mark Short conjugated few atoms in the over a small number of a small number of					
3a(iii)	Answer to include:	, carbon atoms carbon atoms					
JU (iii)	Answer to menuae.	2 nd Mark A large amount of energy is required to promote an electron HOMO and LUMO is not small					
		One from: from HOMO to LUMO HOMO and LUMO enough to absorb visible light					
	(electrophilic)	Substitution reaction as one group joins the ring as another leaves.					
3b(i)	substitution	Electrophilic as the benzene ring is an electron dense molecule and electrophiles will					
	Substitution	attack the benzene ring.					
		$\begin{array}{c} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $					
3b(ii)	C9H12	C CH3					
0	More stable	Re-arrangment of unstable arrangements into more stable arrangements is quite					
3b(iii)	carbocation formed	common in chemistry.					
		The calcium carbonate in limestone is insoluble and the reaction between limestone and hydrochloric acid is					
_	Calcium carbonate/	slow. A direct titration would not give accurate results so a back titration is used.					
4a	limestone is insoluble	The limestone is left to react with a known excess hydrochloric acid until the reaction is finished and no limestone is left. The hydrochloric acid left over is then calculated by titration with sodium hydroxide and					
	Innestone is insoludie	subtracted from the total hydrochloric acid to work out the no of moles of hydrochloric acid which reacted					
		with the limestone.					
		Total no. of mol of HCl = volume x concentration = 0.025 litres x 1.50 mol t ⁻¹ = 0.0375 mol $\frac{10.1 + 10.2}{10.1 + 10.2}$					
		Average volume NaOH = $\frac{10.1 + 10.2}{2}$ = 10.15 cm^3 (ignoring rague result 10.7)					
		no. of mol NaOH = volume x concentration = 0.01015litres x 0.300mol L1 = 0.003045mol					
		HCl + NaOH ──→ NaCl + H₂O					
		1mol 1mol					
4 b(i)	0.0253	0.003045mol 0.003045mol					
(.)							
		25cm ³ sample reacted with 0.003045mol HCl					
		100cm ³ total flask reacted with 0.01218mol HCl					
		No. of moles reacted with limestone = total no. of mol - leftover HCl					
		= 0.0375 mol - 0.01218 mol					
		= 0.02532 mol					

								<u> </u>
		$CaCO_3 + 2HCI \longrightarrow CaCl_2 + H_2O + CO_2$						
4b(ii)		1mol 2mol 0.01266mol 0.02532mol						
	97.4% and yes	$gfm CaCO_3 = (1\times40.1) + (1\times12) + (3\times16) = 40.1+12+48 = 100.1g$						
		mass = no. of mol	•		5		5	
		% purity = <u>Mas</u>	s of pure co	alcium cart limectone	<u>ponate</u> x	$100 = \frac{1}{2}$.266g 1.300 × 10	00 = 97.4%
		Purity is greater					1.509	
		3 mark an	iswer	2 m	ark answ	er	1 mar	·k answer
		Demonstrates a <u>good</u> understanding of the			es a <u>reasonab</u> ng of the che		Demonstrates understanding	a <u>limited</u> of the chemistry
4c	Open Question	involved. A good comp the chemistry has pro		involved, ma statement(s	king some) which are re	elevant to		candidate has made nt(s) which are
	to include:	logically correct, inclusion statement of the prin	-	the situation problem is u	n, showing the nderstood.	it the	relevant to the that at least a	e situation, showing little of the
		involved and the appli these to respond to t	cation of	•				in the problem is
-		Electronic con		n of cobo	alt atom	: 1s ² 2;		² 3p ⁶ 3d ⁷ 4s ²
5a (i)		Electronic con						
5a (ii)	±7	As there are 2 Cl		•	-			
JU (II)		must be Co ²⁺ ions 1 st Mark:			of 2- char	ge betwe	en the two	chloride ions.
5hm	Answer to include:	All three required	Heating sub	stance ive in a desi	ccator		•	steps of heating,
5b(i)	Answer to include.	for 2 nd Mark:	(to prevent			Weigh	-	nd weighing) stant mass
		Gfm CoCl2 = (1x58	1 3.9) + (2x35	5.5) = 58.9	+71 = 129.	9a	10 2011	stant mass
		n o. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{0.204}{129.9}$ 0.00157mol						
		•						
		mass of H2O removed on heating = 0.372g - 0.204g = 0.168g gfm H2O = (2x1) + (1x16) = 2+16 = 18g						
5b(ii)	6	n o. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{0.168}{18}$ = 0.00933mol						
		-						
		ratio of no. of mol CoCl2 : no. of mol H2O 0.00157 : 0.00933mol						
		1 : 5.94						
		Must be Whole N EDTA is a comple		<u>1</u> : Propent the	6 It will form	n a comp	lex ion with	Co^{2+} ions in a
5 c(i)		EDTA is a complexometric reagent that will form a complex ion with Co ²⁺ ions in a 1mol : 1mol ratio allowing the no of moles of Co ²⁺ ions to be calculated from the no.						
		of moles of EDTA	which it re	eacts with	•			
5c(ii)	One answer from:	Colorimetry Spec	trophotome	try Atomic	emission/	absorptior	n spectroscop	py Precipitation
		Percentage Oxyg	en = 100% -	40.0% - 6	.70% = 53	8.30%	_	_
			Elem	ent	С	Н	0	
	Working to include	-	%		40.0	6.70	53.30	-
	moles for each element				40.0	6.70	53.30	
6a	C 3·33		No. of (divide % b		12 - 2 2 2	1	16 = 3.33	
	H 6.70				= 3.33 3.33	= 6.70 6.70	3.33	
	O 3·33		Mole r (divide through by		3.33	3.33	3.33	
			Round to Who		= 1.00 1	2.01 2	1.00	
		Peak with highest			-	_	-]
6b(i)		gfm of empirical		-				
		. empirical form						ass of 90
6b(ii)	One answer from:		OOH]⁺		HOH]⁺	-	-	[CH₃CH₂O]⁺
		Mass (1x12)+(1x1)+(2x16) = 45 (2x12)+(5x1)+(1x16) = 45 (2x12)+(5x16) = 45 (2x12)+(5x1)+(1x16) = 45		

6c	Н 0 H ₃ C — C — C — OH OH or CH ₃ CH(OH)COOH	If Compound X rotates plane polarised light then it must contain a chiral carbon • Chiral carbons have four different groups attached to them • HOOC • CH ₃ OH			
7α	н сн ₃ н н н н—с—с—с—о—с—с—н 	$H \xrightarrow{C} C^{H_3} \xrightarrow{H} (A_{1} \xrightarrow{C} C^{H_3} \xrightarrow{H} (A_{2} \xrightarrow{C} C^{H_3} \xrightarrow{H} (A_{2} \xrightarrow{C} C^{H_3} \xrightarrow{H} (A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} (A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} (A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} (A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} (A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} (A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} (A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} (A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} (A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} (A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} (A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} (A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} (A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} A_{2} \xrightarrow{H} (A_{2} \xrightarrow{H} (A$			
7b	Carboxylic acids	$\begin{array}{c} H & H \\ H - C - C \\ H \\ H \\ H \\ CN^{-} \\ H \\ H \\ H \\ CN^{-} \\ H \\ $			
7с	Diagram showing	$\begin{array}{c} \begin{array}{c} 1^{1^{\circ}} \text{ mark} \\ \text{2 Curly arrows} \\ \text{as shown here} \\ \text{N} \equiv \text{C}^{-} \text{CH}_{3} \\ \text{H}^{1^{\circ}} \text{C}_{-} \text{CH}_{3} \\ \text{C}_{-} \text{CH}_{3} \\ \text{C}_{-} \text{C}_{-} \text{C}_{-} \text{CH}_{3} \\ \text{C}_{-} \text{C}_{-}$			
7d(i)	Ethanol or alcohol	KOH dissolved in water undergoes nucleophilic substitution reactions KOH dissolved in ethanol undergoes elimination reactions			
7d(ii)	278cm³ or 0.278l	$gfm C_{4}H_{9}Cl = (4\times12)+(9\times1)+(1\times35.5) = 48+9+35.5 = 92.5g$ $no. of mol = \frac{mass}{gfm} = \frac{1.85}{92.5} = 0.02mol$ $C_{4}H_{9}Cl \longrightarrow C_{4}H_{8} + HCl$ $1mol \qquad 1mol$ $0.02mol \qquad 0.02mol$ $100\% yield methyl propene = 0.02mol$ $\therefore 60.4\% yield methyl propene = 0.02mol \times \frac{60.4}{100} = 0.02308 mol$ $volume = no. of mol \times molar volume = 0.02308 mol \times 23.0 \ mol = 0.278 \ tres = 278 \ cm^{3}$			
8a	CH₃COO ⁻	CH3COOH + H2O H3O ⁺ + CH3COO ⁻ Acid Base Conjugate Acid Conjugate Base Donates H ⁺ Accepts H ⁺ Formed when Base accepts H ⁺ Formed when Acid loses H ⁺			
8b(i)	4.36	$gfm CH_{3}COONa = (2\times12)+(3\times1)+(2\times16)+(1\times23) = 24+3+32+23 = 82g \text{ mol}^{-1}$ no. of mol = $\frac{\text{mass}}{gfm}$ = $\frac{4.10}{82}$ = 0.05 mol concentration = $\frac{\text{no. of mol}}{\text{volume}}$ = $\frac{0.05 \text{ mol}}{0.25 \text{ litres}}$ = 0.2 mol l ⁻¹ pH = pK _a - log ₁₀ $\frac{[acid]}{[salt]}$ = 4.76 - log ₁₀ $\frac{0.5}{0.2}$ = 4.76 - log ₁₀ (2.5) = 4.76 - (0.398) = 4.362			
8b(ii)	One answer from:	The concentration of the acid andthe acid and the salt are(the concentration) ratio ofsalt will change by the same amountdiluted by the same amountthe acid and salt is unchanged			
8c	Answer to include:	1st Mark: Use the same volume of each buffer solution 2nd Mark measure the (rise/change in) pH after the same volume/moles of alkali has been added measure the volume of alkali required to raise the pH by the same value/from pH=5 to pH=6. the solution which shows the smallest change in pH when the same volume/moles of alkali has been added			

9a	Substance which alters the biochemical processes in the body	A drug is a chemical which alters the normal biochemical processes in the body. An agonist is a chemical which binds to a receptor protein and produced the biochemical response. An antagonist is a chemical which binds to a receptor but does not produce the biochemical response.					
9b	inhibitor	Inhibitors bind to proteins in body to block their activity. Antagonists bind to receptor proteins to block the biochemical response of receptor					
9с	2483	1kg bodyweight \bullet 0.68mg8.4kg bodyweight \bullet 0.68mg x $^{8.4}/_1 = 5.712mg$ 2.3cm ³ dose \bullet 5.712mg1000cm ³ dose \bullet 5.712mg x $^{1000}/_{2.3} = 2483mg$ \therefore 2483 mg per litre = 2483ppm					
9d	Open Question to include:	3 mark answer2 mark answer1 mark answerDemonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.Demonstrates a limited understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is 					
10a(i)	58.1	$PV = nRT \therefore n = \frac{PV}{RT} = \frac{101 \times 0.259}{8.31 \times 353} = 0.00892 mol$ $gfm = \frac{mass}{no \text{ of mol}} = \frac{0.518}{0.00892} = 58.1$					
10a(ii)	One answer from:	$\begin{tabular}{ c c c c c } \hline Propanone & C_3H_6O & a correct structural formula & any other carbonyl compound that $for propanal$ & fits the GFM calculated in (a)(i) $ \end{tabular} \end{tabular}$					
10b	One answer from:	The boiling pointThe boiling point (of butanoic acid) is above boiling point of waterthe water (bath) cannot reach a high enough temperature.					
11a(i)	$K = \frac{[I_3]}{[I_2][I]}$	For the equation: $aA + bB \rightleftharpoons cC + dD$ $K = \frac{[C]^{c} [D]^{d}}{[A]^{\alpha} [B]^{b}}$					
11a (ii)	779	Assuming a 1 litre container: $[I_2] 1.21 \times 10^{-3} = 0.00121 \text{ mol } l^{-1} (\text{ in question}) \qquad [I_3^-] = 0.116 \text{ mol } l^{-1} (\text{ in question})$ $[KI] = 0.239 \text{ mol } l^{-1} \therefore [I^-] = 0.239 \text{ mol } l^{-1} (\text{ at start})$ $I_2 + I^- \rightleftharpoons I_3^-$ $I_{\text{mol}} \qquad I_{\text{mol}} \qquad I_$					
11b	Answer to include:	One from list for 1st MarkStructure depends on VSEPR/ minimising repulsion/minimising repulsion between lone/non-bonding pairsrepulsion is greatest between lone/non-bonding pairsOne from list for 2nd Mark(In B) the lone/non-bonding 					

12a		Carbonyl C=O group group C=O group Group CaHb- Group Group Group Group				
12b	To prevent reactant/product/vapour from escaping	The vapour created by evaporation of substances in the round bottom flask is condensed in the condenser unit and the chemicals returned to the round bottom flask. The condenser unit has cold water going in at the bottom and water leaving at the top.				
12c	Distillation	Distillation separates substances with different boiling points with the substance with the lower boiling point leaving as a vapour then condensed and collected. In this reaction the ethanol CH_3CH_2OH will evaporate and the sodium benzoate $C_6H_5COO^{-}Na^{+}$ remains dissolved in the flask of the distillation apparatus.				
12d	Elimination	Elimination reactions remove small molecules and leave $C=C$ double bonds behind (and sometimes $C=C$ triple bonds). Dehydration is the same reaction but the small molecule removed is water.				
12e	Positively charged hydrogen in HBr	$H - C = C - H \qquad H - C - C - H \qquad H H H H H H H H H H H H H H H H H$				
12f(i)	Answer to include:	1 st Mark (one required) The (benzoate) ion from the salt removes/reacts with H+ from the water the conjugate base of the weak acid, removes/reacts with H+ ions from the water 2 nd Mark (one required) This results in the water equilibrium shifting to the right hand side Shifting to the left hand side if candidate has written an equilibrium reaction with ions on the left hand side this results in excess OH ⁻ ions from the water equilibrium				
12f(ii)	Filtration	Insoluble solids are removed from liquids by filtration. Vacuum filtration can be used to speed up the movement of solution through the filter paper.				
12g	Recrystallisation	Recrystallisation is used to increase the purity of a substance because that substance is highly soluble in a solvent at high temperature but less soluble at lower temperature. The substances crashes out of the solution on cooling but the impurities stay dissolved in the solvent.				
12h(i)	Pure benzoic acid	When pure benzoic acid is added to the benzoic acid collected from process Y, the melting point will be unchanged if the benzoic acid collected in process Y is pure. Impurities in the benzoic acid collected in process Y will change the melting point of the mixture if they are present when mixed with pure benzoic acid.				
12h (ii)	Answer to include:	1st Mark:Any mention of measuring or looking up the melting point of pure benzoic acid2nd Mark:Correctly linking the mixed melting point value to the purity				

©JABchem 2022